Differentiable contributions of human amygdalar subregions in the computations underlying reward and avoidance learning.

نویسندگان

  • Charlotte Prévost
  • Jonathan A McCabe
  • Ryan K Jessup
  • Peter Bossaerts
  • John P O'Doherty
چکیده

To understand how the human amygdala contributes to associative learning, it is necessary to differentiate the contributions of its subregions. However, major limitations in the techniques used for the acquisition and analysis of functional magnetic resonance imaging (fMRI) data have hitherto precluded segregation of function with the amygdala in humans. Here, we used high-resolution fMRI in combination with a region-of-interest-based normalization method to differentiate functionally the contributions of distinct subregions within the human amygdala during two different types of instrumental conditioning: reward and avoidance learning. Through the application of a computational-model-based analysis, we found evidence for a dissociation between the contributions of the basolateral and centromedial complexes in the representation of specific computational signals during learning, with the basolateral complex contributing more to reward learning, and the centromedial complex more to avoidance learning. These results provide unique insights into the computations being implemented within fine-grained amygdala circuits in the human brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cracking the almond (Commentary on Prévost et al.).

Recent advances in functional magnetic resonance imaging (fMRI) have provided an unprecedented peek into the activity of subareas of major anatomical structures in the healthy human brain. However, little is known about subregional activity in the human amygdala, a small, almondshaped corticoid structure in the medial temporal lobe that lacks clear MRI landmarks for compartmentalization of its ...

متن کامل

Neural correlates of specific and general Pavlovian-to-Instrumental Transfer within human amygdalar subregions: a high-resolution fMRI study.

It is widely held that the interaction between instrumental and Pavlovian conditioning induces powerful motivational biases. Pavlovian-Instrumental Transfer (PIT) is one of the key paradigms demonstrating this effect, which can further be decomposed into a general and specific component. Although these two forms of PIT have been studied at the level of amygdalar subregions in rodents, it is sti...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Amygdala neurons mediate acquisition but not maintenance of instrumental avoidance behavior in rabbits.

Whereas the amygdala is generally understood to be involved in aversively motivated learning, the specific associative function of the amygdala remains controversial. This study addressed the amygdalar role in mediation of discriminative instrumental avoidance learning of rabbits. Bilateral microinjection of the GABA receptor agonist muscimol centered in the basolateral nucleus of the amygdala ...

متن کامل

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 34 1  شماره 

صفحات  -

تاریخ انتشار 2011